Pseudomonas putida: An Environment Friendly Bacterium 141

Koma, D., H. Yamanaka, K. Moriyoshi, T. Ohmoto and K. Sakai. 2012. Production of aromatic compounds by

metabolically engineered Escherichia coli with an expanded shikimate pathway. Appl. Environ. Microbiol.

78(17): 6203–6216.

Kondakova, T. and J. E. Cronan. 2019. Transcriptional regulation of fatty acid cis–trans isomerization in the solvent‐

tolerant soil bacterium. Environ. Microbiol. 21(5): 1659–1676.

Krömer, J. O., D. Nunez-Bernal, N. J. Averesch, J. Hampe, J. Varela and C. Varela. 2013. Production of aromatics in

Saccharomyces cerevisiae—a feasibility study. J. Biotechnol. 163(2): 184–193.

Kuhm, A. E., A. Stolz and H. J. Knackmuss. 1991. Metabolism of naphthalene by the biphenyl-degrading bacterium

Pseudomonas paucimobilis Q1. Biodegrad. 2(2): 115–120.

Kulakova, A. N., M. J. Larkin and L. A. Kulakov.1997. The plasmid-located haloalkane dehalogenase gene from

Rhodococcus rhodochrous NCIMB 13064. Microbiol. 143(1): 109–115.

Kumar, M., M. P. Singh and D. K. Tuli. 2012. Genome Shuffling of Pseudomonas sp. Ioca11 for improving degradation

of polycyclic aromatic hydrocarbons. Adv. Microbiol. 2: 26–30.

Lee, J. Y., J. R. Roh and H. S. Kim. 1994. Metabolic engineering of Pseudomonas putida for the simultaneous

biodegradation of benzene. Biotechnol. Bioeng. 43(11): 1146–1152.

Lemoigne, M. 1926. Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull. Soc. Chem. Biol.

8: 770–782.

Lenihan-Geels, G., K. S. Bishop and L. R. Ferguson. 2013. Alternative sources of omega-3 fats: can we find a

sustainable substitute for fish? Nutrients. 5(4): 1301–1315.

Li, W., J. Shi, X. Wang, Y. Han, W. Tong, L. Ma, B. Liu and B. Cai. 2004. Complete nucleotide sequence and

organization of the naphthalene catabolic plasmid pND6-1 from Pseudomonas sp. Gene. 336(2): 231–240.

Liu, K. and S. Li. 2020. Biosynthesis of fatty acid-derived hydrocarbons: perspectives on enzymology and enzyme

engineering. Curr. Opin. Biotechnol. 62: 41821.

Loeschcke, A. and S. Thies. 2015. Pseudomonas putida—a versatile host for the production of natural products. Appl.

Microbiol. Biotechnol. 99(15): 6197–6214.

Loh, K. C. and S. J. Wang. 1997. Enhancement of biodegradation of phenol and a nongrowth substrate 4-chlorophenol

by medium augmentation with conventional carbon sources. Biodegrad. 8(5): 329–338.

Lorente-Cebrian, S., A. G. V. Costa, S. Navas-Carretero, M. Zabala, J. A. Martinez and M. J. Moreno-Aliaga. 2013.

Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the

evidence. J. Physiol. Biochem. 69(3): 633–651.

Malhat, F. and I. Nasr. 2011. Organophosphorus pesticides residues in fish samples from the River Nile tributaries in

Egypt. Bull. Environ. Contam. Toxicol. 87(6): 689–692.

Mallick, K., K. Bharati, A. Banerji, N. A. Shakil and N. Sethunathan. 1999. Bacterial degradation of chlorpyrifos in

pure cultures and in soil. Bull. Environ. Contam. Toxicol. 62(1): 48–54.

Mandalakis, M., N. Panikov, S. Dai, S. Ray and B. L. Karger. 2013. Comparative proteomic analysis reveals

mechanistic insights into Pseudomonas putida F1 growth on benzoate and citrate. AMB Express. 3(1): 41275.

McKinlay, R., J. A. Plant, J. N. B. Bell and N. Voulvoulis. 2008. Endocrine disrupting pesticides: implications for risk

assessment. Environ. Int. 34(2): 168–183.

Metz, J. G., P. Roessler, D. Facciotti, C. Levering, F. Dittrich, M. Lassner, R. Valentine, K. Lardizabal, F. Domergue,

A. Yamada and K. Yazawa. 2001. Production of polyunsaturated fatty acids by polyketide synthases in both

prokaryotes and eukaryotes. Science 293(5528): 290–293.

Mi, J., D. Becher, P. Lubuta, S. Dany, K. Tusch, H. Schewe, M. Buchhaupt and J. Schrader. 2014. De novo

production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida. Microb. Cell

Factories. 13(1): 44866.

Monga, D., P. Kaur and B. Singh. 2021. Microbe mediated remediation of dyes, explosive waste and polyaromatic

hydrocarbons, pesticides and pharmaceuticals. Curr. Res. Microb. Sci. 3: 100092.

Moretto, J. A. S., J. P. R. Furlan, A. F. T. Fernandes, A. Bauermeister, N. P. Lopes and E. G. Stehling. 2019. Alternative

biodegradation pathway of the herbicide diuron. Int. Biodeterior. Biodegrad. 143: 104716.

Mosqueda, G., M. I. Ramos-González and J. L. Ramos. 1999. Toluene metabolism by the solvent-tolerant

Pseudomonas putida DOT-T1 strain, and its role in solvent impermeabilization. Gene 232(1): 69–76.

Müller, R., A. Wagener, K. Schmidt and E. Leistner. 1995. Microbial production of specifically ring-13C-labelled

4-hydroxybenzoic acid. Appl. Microbiol. Biotechnol. 43(6): 985–988.

Nagata, Y. K. Miyauchi, J. Damborsky, K. Manova, A. Ansorgová and M. Takagi. 1997. Purification and

characterization of a haloalkane dehalogenase of a new substrate class from a gamma-hexachlorocyclohexane­

degrading bacterium. Appl. Environ. Microbiol. 63(9): 3707-3710.

Napier, J. A. 2002. Plumbing the depths of PUFA biosynthesis: a novel polyketide synthase-like pathway from marine

organisms. Trends Plant Sci. 7(2): 51–54.